The Instadia maker user’s guide

Philip Bergen (pb@instadia.net)

May 14, 2001

Contents

1 Introduction
1.1 About this document
1.2 Versions.

2 Making the maker
2.1 Filesneeded
2.2 Makeit

3 Using maker

3.1 Philosophy and requirements to the source

3.1.1 Limitations. .
3.1.2 Result.....
3.2 Options
3.2.1 MAINFILE . .
3.2.2 MAKESCRIPT
3.2.3 EXECUTABLE
3.24 LINKER. . ..
3.2.5 LINKER_TAIL
3.2.6 COMPILER . .
3.2.7 DOTOUTPUT
3.2.8 NOFILE. . ..
3.2.9 NOLINK . ..
3.2.10 G2EXCLUDE .

3.2.11 MAKER ADD_DEPENDENCY

3.3 Macros
3.3.1 $DATES. . ..
3.3.2 $TIMES$

4 Dot output
4.1 Whatisdot?
4.2 Gettingdot
4.3 Generating the graphs
4.4 What the graphs show

NN

L N

00O NNNNNOoOOOoOOOOo oY oo

© © W wo

CONTENTS

5 Appendix
5.1 magic.sh

Chapter 1

Introduction

1.1 About this document

This document addresses any developer who is tired of writing makefiles.
The maker allows compilation of a complex (but with some limits) C or
C++ project.

Throughout this document files are either source files (*.cpp, *.cc or
.c) or header files (.h, *.hh or *.hpp) or they are object files (*.0 or *.obj).

The maker cannot substitute makefiles entirely but its a good attempt
at it. You might end out with a makefile calling maker but then the make-
file will be short and easy to write and you’ll know that you'll always com-
pile all files that have such dependencies and not any others.

The optimal compilation awaits!

1.2 Versions

e $Revision: 1.3 §
e $Author: pbergen $

e $Date: 2001/05/13 22:01:16 $

$Log: maker.tex,v $

Revision 1.3 2001/05/13 22:01:16 pbergen

Included option G2EXCLUDE that was added to provide means to
simplify the very useful .class graph.

Revision 1.2 2001/05/10 05:54:57 pbergen
Corrected a few typoes and missing files.

Revision 1.3 2001/05/09 14:53:38 pb
Added NOLINK option.

CHAPTER 1. INTRODUCTION

Revision 1.2 2001/05/09 12:11:06 pb
Added new directive MAKER_ADD_DEPENDENCY.

Revision 1.1 2001/05/08 16:44:52 pb
The documentation to the maker.

Chapter 2

Making the maker

2.1 Files needed

You need these files: maker.cpp, maker.h, makeutilities.h, optionreader.h
and file.h.

This manual might come in handy too: maker.tex, maker.ps or
maker .pdf.

2.2 Make it

Acknowledging the hatred of make files all you need as a decently recent
make or a C++-compiler and either of these should get you going:

make maker

or

gcc maker.cpp —o maker

Chapter 3

Using maker

3.1 Philosophy and requirements to the source

Maker works this way: you supply the main source file as MAINFILE and
all the header files you can find.

Then the maker looks in the MAINFILE for include statements and if
the file being included was among the header files supplied on the com-
mand line. Files that match are added as dependencies to MAINFILE.
These added files are evealuated in the same way as MAINFILE generating
dependencies to them and so on. Anyone thinking recursion? -You bet!

Everytime a header file is added the maker tries to guess an appropri-
ate source file matching this header (by changing the extension to .cpp,
.cc and .c). If there is such a file it is added as dependency to the header
and it too is scanned for include statements.

Looking for include statments stops after 256 lines or when the key-
word class is encountered. No preprocessing is made all non include
statements are simply ignored.

3.1.1 Limitations

The above leads us to some limits of the maker:

Include statments must look like this: #include and not # include.
This is not a bug. If you have include-statements that you want the maker
to ignore you can just add that space between # and include and the
maker will ignore the include (but the compiler will not!).

If you have more than 256 lines of include statements in your source
you will have to raise that level in file.h look for static const int
MAX=256; and recompile the maker.

Each source file must have a header file and that header file must
be included by a file within the dependencies of MAINFILE. If you have
one header file that lists functions defined in more than one source file

CHAPTER 3. USING MAKER 7

then that will not compile. Exception: Dependencies can be added with
MAKER ADD_DEPENDENCY. See below.

3.1.2 Result

After running the maker the result is a shell script that tries to compile the
files one by one. When a compilation fails the script halts. At the end of
each script the final linking takes place.

3.2 Options

The maker takes the following options (must be CAPITALS) as command
line parameters (preceded by a minus ’-’) or in an options file.
Siimple macros can be used as well. These are described below.

3.2.1 MAINFILE

This option specifies the main source file.

E.g.: MAINFILE=maker.cpp

Default: If there was an optionsfile the default is the options file without
extension, else the maker falls out with an error.

3.2.2 MAKESCRIPT

This option specifies what to call the shell script.

E.g.: MAKESCRIPT=build.sh

Default: If there was a MAINFILE the default is the MAINFILE with exten-
sion . sh, else the maker falls out with an error.

3.2.3 EXECUTABLE

This option specifies what to call the resulting executable.
E.g.: EXECUTABLE=maker
Default: MAINFILE without extension.

3.2.4 LINKER

This option specifies what command to run as linker.
E.g.: LINKER=g++ -lm -lpng -1z -Wl,-rpath -W1,/usr/local/lib
Default: g++ -lm

CHAPTER 3. USING MAKER 8

3.2.5 LINKER_TAIL

This option specifies what to append to the linking command after all the
object files.

E.g.: LINKER_TAIL=myRPC/libmyRPC s.a

Default: empty.

3.2.6 COMPILER

This option specifies what command to run as the compiling command.
E.g.: g++ -g-Wall
Default: g++-02 -g

3.2.7 DOTOUTPUT

This option specifies that you want dot output and what the files should

be called. There will always be two files: yourname . dot and yourname.all.dot.
See the dot chapter for more details.

E.g.: dot.dot

Default: nothing.

3.2.8 NOFILE

This option has two purposes. When used as a command line parameter
it tells the maker that none of the parameters are the name of an option
file. The nifty feature is when it is used within a source file. If a source
file is equipped with a comment containing maker options as lines in an
option file, no option file will be necessary to build you project even if it
needs to set some of the parameters! When the maker sees the NOFILE
option it stops parsing the source file (or option file). But since it was told
that there was no option file it assumes that the file on its command line
is actually a MAINFILE.

E.g.: look in maker. cpp...

Default: nothing.

3.2.9 NOLINK

This option tells maker not generate a linking command in the make-
script.

E.g.: -NOLINK

Default: nothing.

CHAPTER 3. USING MAKER 9

3.2.10 G2EXCLUDE

This option tells maker to exclude a file from the .class dot-file. Its main
purpose being to provide means to reduce cluttering of this very useful
type of graph.
This option can be inserted many times to exclude more than one file.
The file name must be entered without path.
E.g.: -G2EXCLUDE-=intlist.cpp -G2EXCLUDE-=logger.cpp
Default: nothing.

3.2.11 MAKER ADD_DEPENDENCY

This option is source/header file only. It will not work in an option file or
as a command line parameter. It adds a source-file dependency to the file
it is written in. This file needs not be included on the list of files on the
command line. Useful when one header file encapsulates the functions
of many source files. Make sure you hide the statement inside comments
but with no white-space to the left of it.

E.g.: MAKER ADD_DEPENDENCY="“somefile.cpp”

Default: nothing.

3.3 Macros

Macros can appear anywhere in any option and will always be expanded
as follows below.

3.3.1 $DATES$

The DATE-macro is expanded to the current date in this format:
yyyy-mm-dd

3.3.2 S$TIMES$

The TIME-macro is expanded to the current time in this format:
hh :mm

Chapter 4

Dot output

4.1 Whatis dot?

Dot is a fabulous graph-drawing utility made by AT&T and Bell labs
(thanks a million guys!). It draws graphs of related nodes based on a sim-
ple text file. You need not tell where to place the nodes, that’s what dot
takes care of.

4.2 Getting dot

Dot is part of the graphviz package available at this URL:
http://www.research.att.com/sw/tools/graphviz/.

4.3 Generating the graphs

If the dot output was named dot . dot then the following commands ren-
ders postscript files:
dot dot.dot -Tps -o dot.ps
dot dot.all.dot -Tps -o dot.all.ps
If the desired output is a PNG-file do the following:
dot dot.dot -Tpng -o dot.png
dot dot.all.dot -Tpng -o dot.all.png

4.4 What the graphs show

The one with .all. in it, contains all header and source files found and
how they relate. The other is a map of how the source files only are related.

When a source file needs to be rebuilt it is denoted by a shaded back-
ground in the box.

10

Chapter 5

Appendix

5.1 magic.sh

The magic script is a simple way of building a file in your project if you
have a standard option file:
maker standard.opt -MAINFILE=$* $(find . -name "*.h")
sh build.sh

Now to compile a file in your project you only need to write:
magic.sh somepart/partlexecutable.cpp.

11

